

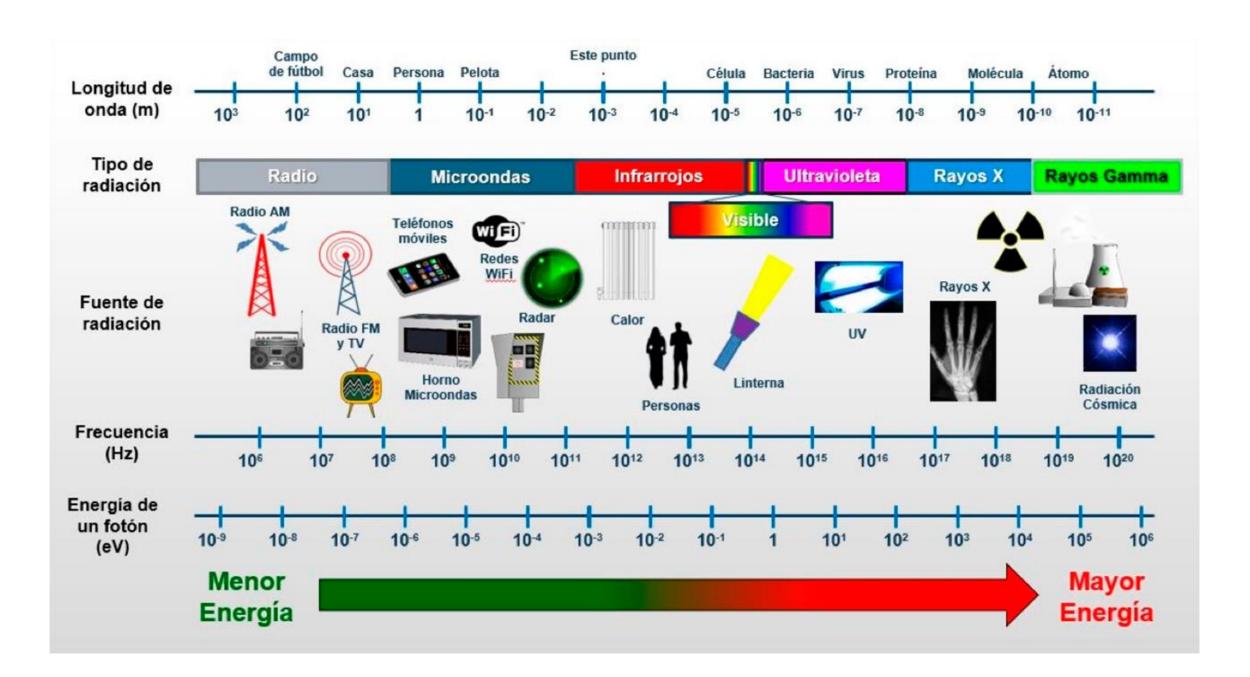
Organiza

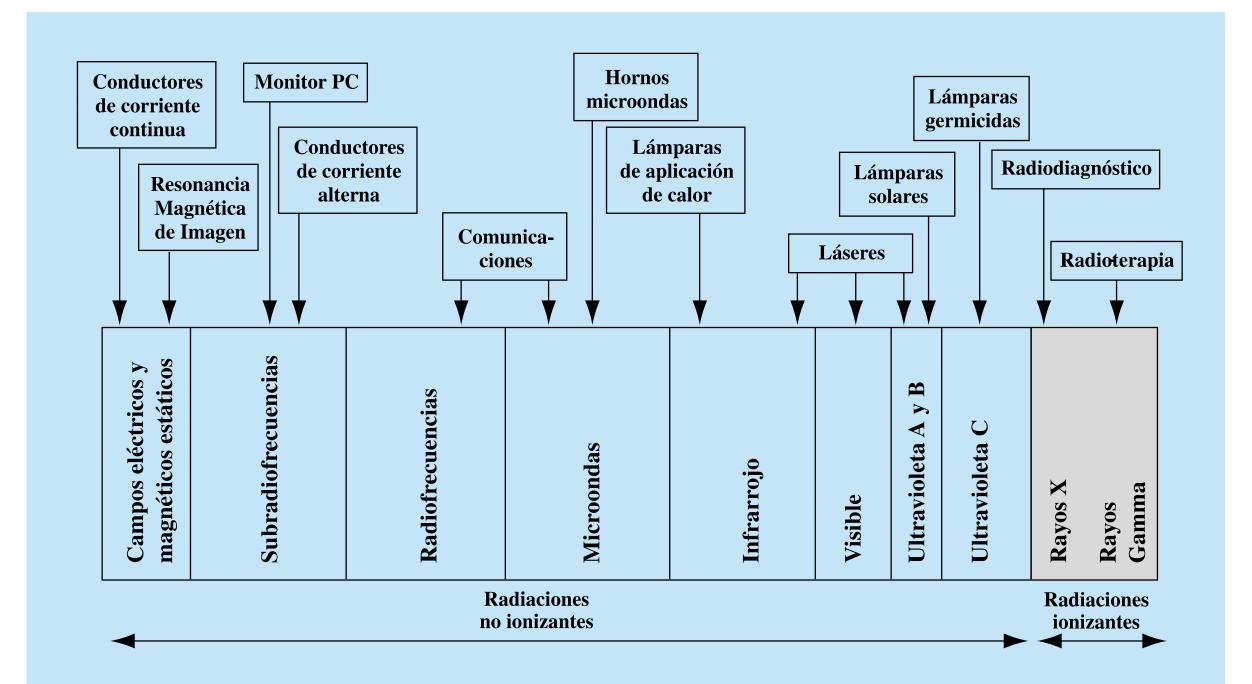
www.corporacionsoa.co

Hotel Intercontinental Medellín - Colombia 29, 30 y 31 de octubre de 2025

Protegiendo al trabajador del siglo XXI: Riesgos y controles en la exposición a radiaciones no ionizantes

Dra. Ana María Salazar Bugueño
Profesora Titular
Facultad de Medicina. Universidad de Chile





AGENDA

- Marco Teórico
- Normativa y Legislación
- Medición y Evaluación
- Aplicación

REGIONES ESPECTRALES DE LAS RnI			
Región	Longitud de onda	Frecuencia	
Ultravioleta	180 a 400 nm	750 THz a 1660 THz	
Visible	400 a 770 nm	400 THz a 750 THz	
Infrarojo	770 nm a 1 mm	300 GHz a 400 THz	
Microondas	1 mm a 1 m	300 MHz a 300 GHz	
Radiofrecuencias	1m a 100 Km	3 KHz a 300 MHz	
Radiaciones ELF	100 Km a 100.000 Km	3 Hz a 3 KHz	

INTERACCIÓN DE LAS RADIACIONES NO IONIZANTES CON LA MATERIA

Región espectral	Interacción con la materia
Radiación ELF	Inducción de corrientes eléctricas
Radiofrecuencias	Inducción de corrientes eléctricas y absorción como energía vibratoria de las moléculas que se transforma en calor
Microondas	Absorción como energía rotacional y vibratoria de las moléculas que se transforma en calor
Radiación IR	Absorción como energía rotacional que se transforma en calor
Radiación visible y UV	Absorción como energía fotoquímica y calor

Unidad de Medida	Característica	
Watt/m ² (W/m ²)	Unidad más común para la mayoría de las radiaciones no ionizantes (RF, Microondas, IR, UV). Mide la irradiancia o densidad de potencia, es decir, la potencia de la radiación que incide sobre una superficie	
Tesla (T) / Gauss (G)	Miden la densidad de flujo magnético (la intensidad del campo magnético), utilizada para las radiaciones de muy baja frecuencia (campos magnéticos estáticos y de líneas de energía).	
Índice UV	Es un valor adimensional (sin unidad) utilizado globalmente para describir el nivel de radiación ultravioleta en la superficie terrestre relevante para los efectos en la salud humana	

Instrumentos de Medición

Instrumentos de Medición

Medidor de campos electromagnéticos

Monitor personal RF hasta 8 GHz

Instrumentos de Medición

Medidor de Potencia Láser (Láser)

Medidor de radiación ultravioleta

Tipo de Radiación No Ionizante	Espectro	Instrumento de Medición Común	Unidad de Medida (SI)
Campos Eléctricos y Magnéticos (Extremadamente Bajas Frecuencias)	ELF (0-300 Hz)	Medidor de Campo Magnético (Teslámetro/Gaussímetro)	Tesla (T) o Gauss (G)
Radiofrecuencia y Microondas	RF (3 kHz - 300 GHz)	Electromagnético o	Watt por metro cuadrado (W/m²) (Densidad de Potencia)
Radiación Infrarroja	IR	1	Watt por metro cuadrado (W/m²) (Irradiancia)
Luz Visible	Óptico	Luxómetro o Fotómetro	Lux (lx) (lluminancia)
Radiación Ultravioleta	UV	Uv-metro o Radiómetro UV	Watt por metro cuadrado (W/m²) (Irradiancia) o Índice UV (Adimensional)

Límites Maximos Permisibles. Normativa Internacional

• Los límites más reconocidos a nivel internacional son los establecidos por la Comisión Internacional de Protección contra la Radiación No Ionizante (ICNIRP).

Los valores se dividen en dos conceptos principales:

- Restricciones Básicas (RB): Límites internos directamente relacionados con <u>efectos adversos conocidos sobre la salud</u> (ej., calentamiento tisular o estimulación nerviosa).
- Niveles de Referencia (NR): Valores ambientales externos (fácilmente medibles) que, si se cumplen, <u>aseguran el cumplimiento de las</u> Restricciones Básicas.

Radiofrecuencia

Magnitud	Rango de Frecuencia	Valor de Referencia	Efecto Biológico Limitante
SAR (Cuerpo Entero)	100 kHz≤f≤6 GHz	0.4 W/Kg	Efectos térmicos (calentamiento general)
Densidad de Potencia (S)	6 GHz≤f≤300 GHz	10 (W/m ²)	Efectos térmicos (calentamiento local/superficial)

El SAR (Specific Absorption Rate) es una medida de la potencia de radiofrecuencia (RF) absorbida por unidad de masa de tejido corporal cuando se expone a un campo electromagnético

Radiación de Radiofrecuencia y Microondas (RF/MO)

Los límites se definen por la **Densidad de Potencia (S)** o el **Campo Eléctrico (E)** para evitar el **calentamiento tisular (efectos térmicos)**, que es el principal riesgo.

Rango de Frecuencias	Nivel de Referencia Ocupacional (S)
Baja Frecuencia (ej. 100kHz)	Se usa Campo E/H (no S)
400MHz a 2GHz (Telefonía móvil)	f/40W/m² (donde f es la frecuencia en MHz)
2GHz a 300GHz (Wi-Fi, 5G)	50W/m ² (o 5mW/cm ²)

Radiación Ultravioleta (UV)

El límite se establece como una **Exposición Radiante Máxima Permisible** para una jornada de 8 horas, ponderada por la sensibilidad biológica al daño.

Tipo de Radiación (λ)	IDIACAA DRIBAIBAI	Valor Límite de Exposición (VLE)
`	Fotoqueratitis y Eritema (quemadura solar)	30J/m² (para 8 horas)

Radiación Láser

λ Típica	Riesgo Principal	MPE Ocupacional (para 8 horas)
Visible (400-700nm)	Daño retinal	1.8mW/cm2
1	Daño retinal y cataratas	10mW/cm2
Infrarrojo Lejano (ej. Láser CO2 , 10,6µm)	Quemadura corneal	0.1W/cm2

Campos Eléctricos y Magnéticos de Extremadamente Baja Frecuencia (ELF)

Se refieren a las frecuencias asociadas con el sistema eléctrico (ej. 50/60Hz). Los límites se basan en la inducción de corrientes en el cuerpo.

Tipo de Campo			Nivel de Referencia Público General
Magnético (H)	50/60Hz	1000μT(10 Gauss)	200μT (2 Gauss)
Eléctrico (E)	50/60Hz	10kV/m	5kV/m

¿¿¿Cuál(es) es(son) el(los) procedimiento(s) de medición????

Procedimiento Medición: RUV

El procedimiento de medición de la radiación ultravioleta (**UV**) en un entorno laboral se realiza para comparar la exposición del trabajador con los <u>Valores Límite</u> <u>de Exposición (VLE)</u> y se centra en determinar la <u>irradiancia efectiva</u> o la <u>exposición radiante</u> en la zona de trabajo

- 1. Preparación y datos necesarios
- 2. Equipo de medición (radiometro UV)
- 3. Ejecución de la medición
- 4. Análisis y comparación con VLE (cálculo del riesgo)

Procedimiento Medición RUV: Preparación y datos necesarios

Antes de medir, se debe recopilar la siguiente información:

- *Identificación de la Fuente:* Determinar el tipo de fuente de UV (ej. lámpara germicida, soldadura por arco, lámparas de curado).
- <u>Longitud de Onda:</u> Es crucial saber si la emisión es UVA (315–400nm), UVB (280–315nm), o UVC (100–280nm). Los límites de exposición son más estrictos en la región UVC y UVB (más peligrosas biológicamente).
- <u>Tiempo de Exposición:</u> Estimar cuánto tiempo el trabajador está expuesto a la fuente durante una jornada laboral.

Procedimiento Medición RUV: Equipo de Medición

El instrumento principal es el *Radiómetro UV*.

- <u>Sonda Espectral</u>: El radiómetro debe utilizar una sonda (detector) con un **filtro de respuesta de acción espectral** que simule la sensibilidad biológica del ojo y la piel humana. Esto permite medir la **irradiancia efectiva** (Eeff), es decir, la irradiancia ponderada por el riesgo.
- *Unidades:* Las mediciones se expresan comúnmente en:
 - <u>Irradiancia (W/m² o mW/cm²)</u>: Potencia de la radiación por unidad de área (para fuentes continuas).
 - **Exposición Radiante** (J/m² o mJ/cm²): Energía de la radiación por unidad de área (para fuentes pulsadas o para comparar con el VLE de 8 horas).

Procedimiento Medición RUV: Ejecución de la medición

La medición debe simular las condiciones reales de exposición del trabajador:

Medición de Campo Libre:

- <u>Distancia</u>: Colocar la sonda del radiómetro a la distancia mínima de trabajo o a la distancia más corta a la que el trabajador pueda acercar su cuerpo/cabeza a la fuente.
- <u>Ángulo</u>: Orientar la sonda perpendicularmente al haz incidente (90°) para capturar la máxima irradiancia.
- <u>Lectura</u>: Registrar el valor de la **irradiancia efectiva** (Eeff) en watt por metro cuadrado (W/m2) o milivatios por centímetro cuadrado (mW/cm²).

Medición Ponderada:

- Si el <u>trabajador se mueve o la fuente es direccional</u>, se pueden tomar múltiples mediciones en diferentes puntos del área de trabajo para obtener una exposición promedio.
- Para <u>fuentes pulsadas</u> (como flashlamps), el instrumento debe medir la **exposición radiante por pulso** (H).

Procedimiento Medición RUV: Análisis y comparación VLE (cálculo del riesgo)

- El valor límite más utilizado para la radiación UV en el trabajo (exposición ocupacional) es el límite de **Exposición Radiante Efectiva** para una jornada de 8 horas.
- Valor Límite de Exposición (VLE):
 - Hmax (exposición radiante por pulso máxima)=30 J/m²(o 3 mJ/cm²)
 - Esta es la <u>cantidad máxima de energía UV efectiva</u> que se permite que el <u>ojo o la piel</u> de un trabajador sin protección reciba en un período de <u>8 horas</u>.

Y me pregunto se pueden controlar???????

Medidas de Control Radiofrecuencia y Microondas (RF/MO)

Controles de Ingeniería

- Ap<u>antallamiento (Jaula de Faraday):</u> Utilizar cerramientos de malla metálica o láminas conductoras para contener la radiación (ej., en salas de pruebas o equipos de soldadura de RF).
- <u>Apagado/Enclavamiento:</u> Instalar interruptores de seguridad (interlocks) en las puertas de acceso a las celdas de antenas para asegurar el apagado o la reducción de potencia al abrirse.

Controles Administrativos

- <u>Procedimientos LOTO</u>: Implementar el bloqueo/etiquetado (LOTO) para garantizar que las antenas estén **apagadas** o en modo de baja potencia antes del trabajo.
- <u>Distancia de Seguridad</u>: Demarcar y señalizar las **Zonas de Peligro** (donde se excede el VLE) y establecer distancias mínimas de trabajo.
- <u>Rotación de Personal</u>: Limitar el tiempo de exposición de los trabajadores en áreas donde los niveles son altos pero están dentro del límite legal.

Medidas de Control Radiofrecuencia y Microondas (RF/MO)

EPP

- **Monitor Personal (Exposímetro):** Dispositivo portátil obligatorio que alerta al trabajador si los niveles de RF alcanzan el límite o un umbral de advertencia.
- Ropa de Apantallamiento (Trajes Faraday): Utilizada solo para tareas críticas en zonas de alta exposición, proporcionando protección corporal.

Medidas de Control: Radiación Láser

El objetivo es prevenir la exposición directa o reflejada, que puede causar daño ocular irreversible.

Controles de Ingeniería (Prioridad Máxima)

- <u>Encerramiento Total:</u> Encerrar completamente el haz y la trayectoria del láser mediante carcasas y cerramientos opacos.
- <u>Interlocks:</u> Utilizar sistemas de seguridad que apagan o reducen la potencia del láser si se abre una cubierta o puerta de acceso.
- Ventanas con Filtro: Usar ventanas o mirillas hechas de material que absorba la longitud de onda específica del láser.
- <u>Bloqueos del Haz:</u> Usar obturadores y barreras opacas para bloquear el haz cuando no está en uso.

Medidas de Control: Radiación Láser

Controles Administrativos

- <u>Oficial de Seguridad Láser (LSO)</u>: Designar a un responsable de la supervisión de la seguridad del láser.
- <u>Clasificación de Zonas</u>: Delimitar y señalizar las **Zonas de Peligro Láser** con la clase de riesgo y las precauciones requeridas.
- **Procedimientos Operativos:** Documentar el uso, mantenimiento y alineación segura de los láseres.

<u>EPP</u>

 Gafas de Seguridad Láser: EPP obligatorio con la Densidad Óptica (OD) y la Longitud de Onda correctas para bloquear el láser.

Medidas de Control: Radiación UV

El objetivo es prevenir el daño ocular (fotoqueratitis) y cutáneo (eritema y cáncer a largo plazo).

Controles de Ingeniería

- <u>Encerramiento de la Fuente</u>: Utilizar cubiertas, carcasas o **acrílicos con filtro UV** para encerrar fuentes artificiales (ej., lámparas germicidas, lámparas de curado).
- Apantallamiento Localizado: Usar cortinas o biombos de soldadura para aislar la UV del arco eléctrico de otros trabajadores.
- <u>Ventilación:</u> Para fuentes que generan ozono (como las UVC de onda corta), asegurar la ventilación para eliminar el ozono.

Medidas de Control: Radiación UV

Controles Administrativos

- <u>Limitación de Tiempo</u>: Restringir el tiempo que el personal pasa cerca de fuentes de UV (ej., al realizar inspecciones visuales de curado UV).
- <u>Señalización:</u> Advertir claramente sobre la presencia de fuentes de radiación UV.

<u>EPP</u>

- <u>Protección Ocular:</u> Gafas o visores con **protección UV certificada** (ej., caretas de soldador con filtro).
- Ropa Protectora: Usar ropa de trabajo de manga larga y guantes de material denso para cubrir toda la piel expuesta.

Medidas de Control: Campos Eléctricos y Magnéticos ELF (50/60Hz)

El objetivo es mantener los campos por debajo del Nivel de Referencia para prevenir la estimulación nerviosa y los efectos de inducción.

Controles de Ingeniería

- <u>Aumento de la Distancia</u>: La medida más efectiva es separar la fuente (líneas, transformadores) del área de trabajo, ya que la intensidad del campo disminuye rápidamente con la distancia.
- Blindaje de Campo Eléctrico (E): Usar pantallas conductoras metálicas puestas a tierra para desviar las líneas de campo.
- <u>Blindaje de Campo Magnético (H):</u> Usar materiales de alta permeabilidad (ej: acero al silicio) para redirigir las líneas de campo magnético.

Medidas de Control: Campos Eléctricos y Magnéticos ELF (50/60Hz)

Controles Administrativos

- <u>Delimitación</u>: Crear barreras físicas para restringir el acceso del personal no esencial a las zonas de campo alto (ej., cerca de grandes transformadores).
- Rotación y Control de Tiempo: Limitar el tiempo que el personal pasa en zonas donde los niveles son altos (ej., cerca de hornos de inducción).

EPP

• <u>Trajes Faraday/Ropa Conductora</u>: Utilizados en situaciones de campo eléctrico muy alto (ej., trabajo con líneas de 500kV) para proteger el cuerpo y evitar descargas por contacto.

Quizás se analizamos algún caso práctico, podamos aclarar nuestras dudas, veamos!!!!!!

Caso Práctico: Exposición a Radiación UV en una Empresa Textil

Contexto: exposición a radiación ultravioleta (UV) en el área de curado e impresión de una empresa del sector textil

Detalle	Descripción
Empresa	Textil "Moda Rápida, S.A."
Area	Sección de Curado e I mpresión
Puestos Afectados	Operarios de máquinas de curado UV, Técnicos de mantenimiento, Impresores.
Fuente de Radiación	Lámparas de curado UV de alta intensidad (principalmente UV-A y algo de UV-B) utilizadas para secar y fijar tintas y recubrimientos en telas.
Frecuencia/Duración	Exposición rutinaria (varias horas al día) al abrir las cubiertas de las máquinas para carga/descarga o mantenimiento, o por fugas en los sistemas de sellado.
Síntomas I niciales	Reportes de irritación ocular, sensación de "quemazón" en la piel de brazos y cuello, y fatiga visual.

Identificación de Peligros

Peligro	Tipo de Radiación/Fuente	Posibles Efectos en la Salud
Ocular	UV-A y UV-B de lámparas	Conjuntivitis, fotoqueratitis (ceguera de nieve), cataratas (a largo plazo), pterigión.
Dérmico (Piel)	UV-A y UV-B de lámparas	Eritema (quemadura solar), fotoenvejecimiento, cáncer de piel (a largo plazo, especialmente si hay exposición UV-B).

Evaluación de Riesgos (Nivel Inicial)

Se utiliza una matriz simple de Probabilidad (P) x Consecuencia (C).

Tarea/Exposición	Probabilidad (P)	Consecuencia (C)	Nivel de Riesgo (PxC)
Apertura de cubiertas (rutina)	3 (Media/Frecuente)	3 (Grave - Lesión ocular/dérmica)	9 (ALTO)
Fuga por sellado defectuoso	2 (Baja/Ocasional)	3 (Grave - Lesión ocular/dérmica)	6 (MEDIO)
Mantenimiento (mayor)	1 (Baja/Rara)	4 (Muy Grave - Exposición directa)	4 (MEDIO)

Escala: P (1: Rara, 2: Ocasional, 3: Frecuente); C (1: Leve, 2: Moderado, 3: Grave, 4: Muy Grave).

Medición y Comparación

Se realiza una medición radiométrica en el punto de mayor exposición (al lado de la abertura de la máquina).

Medición: 25mW/cm² (Irradiancia UV-A) y 0.05mW/cm² (Irradiancia UV-B)

Valor Límite de Exposición (VLE) o TLV (ACGIH):

Piel/Ojos (UV-A: 315-400 nm): 10mW/cm² para periodos > 1000s (exposición diaria).

Piel/Ojos (UV-B/C: 200-315 nm): Depende de la longitud de onda, pero el **riesgo actinico** es mucho menor si se cumplen los 3mJ/cm² para 8 horas.

<u>Análisis de Resultados:</u> La irradiancia UV-A medida (25mW/cm²) supera el VLE establecido de 10mW/cm². Esto confirma la necesidad urgente de medidas de control.

Medidas de Control

Eliminación / Sustitución (Ideal)

- No Aplicable: La tecnología UV es esencial para el proceso.
- Sustitución (Parcial): Evaluar la sustitución de tintas/recubrimientos por opciones que permitan un curado con luz visible (LED), que es menos energética y dañina que la UV.

Controles de Ingeniería (Prioridad Máxima)

- Confinamiento: Sellar herméticamente la cámara de curado para evitar fugas de radiación.
- Bloqueo y Enclavamiento: Instalar interlocks (sistemas de enclavamiento) que apaguen automáticamente las lámparas si la puerta o cubierta de protección se abre durante el ciclo de operación.
- Apantallamiento: Reemplazar las cubiertas transparentes o defectuosas con pantallas de material opaco a la UV o vidrio con filtro UV (por ejemplo, policarbonato con aditivos UV-absorbentes).

Medidas de Control

Controles Administrativos (Procedimientos y Capacitación)

- Señalización: Colocar señales de advertencia de riesgo de Radiación UV en las máquinas y en el acceso al área.
- Procedimientos de Trabajo Seguro (PTS): Establecer y hacer cumplir un PTS que prohíba la apertura de la máquina sin el apagado previo de las lámparas y el uso de EPP adecuado.
- Capacitación: Formar a todo el personal (operadores y mantenimiento) sobre los riesgos de la UV, los síntomas de la sobreexposición y el uso correcto del EPP.
- Mantenimiento Preventivo: Establecer un programa riguroso de mantenimiento para las lámparas y los sistemas de sellado y bloqueo.
- Vigilancia de la Salud: Incluir exámenes oculares periódicos (fondo de ojo) en la vigilancia de la salud ocupacional para detectar efectos crónicos tempranamente.

Medidas de Control

Equipo de Protección Personal (EPP)

- Protección Ocular: Gafas o pantallas faciales certificadas que filtren el 100% de la radiación UV-A y UV-B (debe especificar la protección UV 400 o superior).
- Protección Dérmica:
 - Guantes de nitrilo o cuero (dependiendo de la tarea) que cubran las muñecas.
 - Ropa de trabajo de manga larga y cuello alto (tejido denso o con tratamiento UV si la exposición es prolongada), cubriendo toda la piel expuesta.

Reevaluación del Riesgo

Tarea/Exposición	Probabilidad (P)	II. Anserienda II. I	Nivel de Riesgo (PxC)
Apertura de cubiertas (rutina)	1 (Rara - Interlock)	1 (Leve - Lámparas apagadas)	1 (BAJO)
Fuga por sellado defectuoso	1 (Rara - Mantenimiento)	2 (Moderado - EPP)	2 (BAJO)
Mantenimiento (mayor)	1 (Rara - EPP/PTS)	2 (Moderado - EPP/PTS)	2 (BAJO)

Conclusión Final: Mediante la aplicación rigurosa de los Controles de Ingeniería y el respaldo de los Controles Administrativos y EPP, el nivel de riesgo ha sido reducido de ALTO a BAJO (o tolerable).

45° Congreso de Ergonomía, Higiene, Medicina y Seguridad Ocupacional.

Hotel Intercontinental Medellín - Colombia 29, 30 y 31 de octubre de 2025

La higiene industrial, tiene como misión fundamental proteger la salud de los trabajadores.

¡El cambio comienza con ustedes!

MUCHAS GRACIAS

Organiza:

www.corporacionsoa.co

