

42° Congreso de Ergonomía, Higiene, Medicina y Seguridad Ocupacional. Hotel Intercontinental Medellín - Colombia 2, 3 y 4 de noviembre de 2022

ΡΙСΛ R R O

Providing Solutions to the World's Most Challenging Environmental Questions

Lo humano y lo técnico en un mundo que se transforma

Organiza:

Sociedad Colombiana de Medicina del Trabajo Capítulo Antioquia

AGENDA

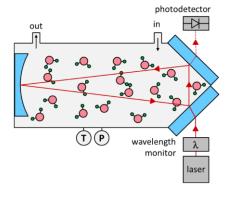
- 1. Picarro Intro
- 2. What makes CRDS so special?
- 3. Analyzers for GHG & Trace Gases Case Studies
- 4. Solutions for Hazardous Air Pollutants Case Studies
- 5. Surrogate gas validation
- 6. Q/A

WHO ARE WE?

- Leading provider of solutions to measure greenhouse gas concentrations, trace gases and stable isotopes in industrial monitoring, air quality, energy and utilities markets.
- Over 45 patents owned by Picarro or exclusively licensed from Stanford University
- ISO 9001:2015 Certified Corporate Headquarters, including R & D, Engineering and Manufacturing/Operations in Santa Clara, California
- 220+ employees including 35+ STEM PhDs
- Thousands of Picarro instruments in 95 countries world-wide

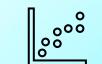
20+ YEAR HISTORY OF CONTINUOUS MONITORING

National Ecological Observatory Network


World Meteorological Organization

Global Atmospheric Watch

WHAT MAKES PICARRO CRDS SO SPECIAL?



Real-Time, continuous measurements

No sample pretreatment, chromatographic separation, or complex peripherals

Specific & sensitive to a wide variety of compounds and applications

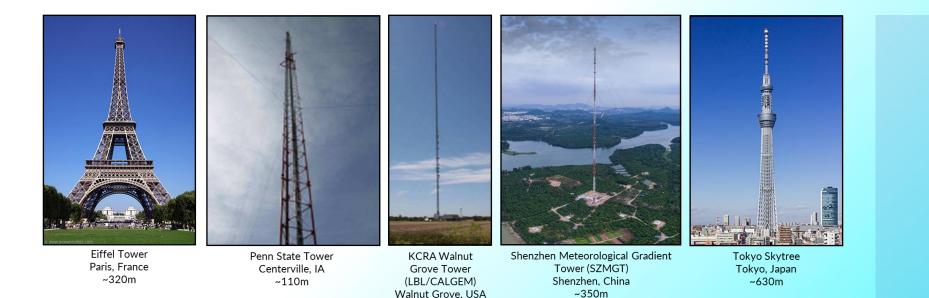
Turn-key, low operating costs, long-term stability

ANALYZERS FOR GHG & TRACE GASES

Ethylene (C₂H₄)

Ethane (C₂H₆)

<u>Ammonia (NH₃)</u>


<u>Acetylene (C_2H_2)</u>

CASE STUDY – GHG NETWORKS

G2301: CO₂, CH₄ and H₂O **G2401**: CO₂, CH₄, CO and H₂O

Stability

No need for constant adjustment for humidity or other atmospheric changes

The Gold Standard for Atmospheric GHG Measurements

~470m

CASE STUDY – METROCLIMA MEGACITIES – Sao Paulo

G2301-m: CO_2 , CH_4 and H_2O **G2201-i** : d13C of CO_2 and of CH_4 **G2311-f**: CO_2 , CH_4 and H_2O

- PICARRO G2301-m Pico do Jaragua: <u>http://www.metroclima.iag.usp.br/stations/pico-do-</u> <u>jaragua/</u>
- PICARRO G2401 UNICID:

http://www.metroclima.iag.usp.br/stations/unicid/

- PICARRO G2301 & G2201-I IAG: http://www.metroclima.iag.usp.br/stations/iag/
- PICARRO G2311-f ICESP:

http://www.metroclima.iag.usp.br/stations/icesp/

CASE STUDY – FLIGHT MONITORING

G2401-m : CO₂, CH₄, CO and H₂O for flight @ 1 Hz

Speed

Flight-optimized design elements minimize effects of aircraft vibration, pitch, roll, and rapidly changing ambient conditions.

PICARRO

CASE STUDY – EDDY COVARIANCE

G2311-f : CO₂, CH₄ and H₂O

Picarro's Superflux at the Cabauw Superstation: InGOS Flux Instrument Trial | Picarro

Speed

Flux mode precision of CO_2 , CH_4 and H_2O at 10 Hz!

CASE STUDY – MID-IR SOLUTIONS

G5310: N₂O, CO and H₂O

Hai Luo Gou background station

Sensitivity

Parts-per-trillion (ppt) sensitivity meets WMO & ICOS performance requirements for N_2O and CO monitoring

ShenZhen CMA

CASE STUDY – SOIL FLUX

G2308: CH₄, N₂O and H₂O G2508: CO₂, CH₄, NH₃, N₂O and H₂O

Eri Saikawa Emory University

Simplicity

 N_2O , CH_4 , CO_2 , NH_3 and H_2O all in a single analyzer! Open or closed systems integrating easily with 3rd party/custom chamber systems

CASE STUDY – LIVESTOCK FARMING

G2509: **CO**₂, **CH**₄, NH₃, N₂O and H₂O

Dairy Campus based in Leeuwarden, NL part of the Wageningen University & Research (WUR).

Speed Optimized flow path for fast ammonia response!

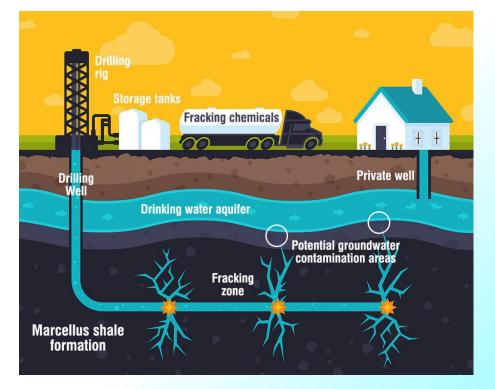
CASE STUDY – PORTABLE SOLUTIONS

G4301: CO₂, CH₄, and H₂O GasScouter

Methane emissions from trees: Resolving the drivers, fluxes and significance of this overlooked pathway...and how we got here | Picarro

Scouter!

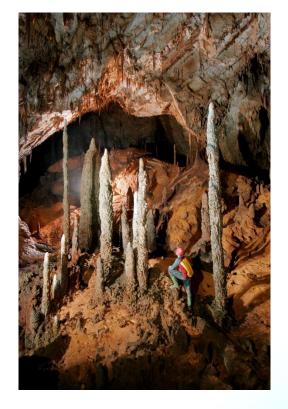
Lightweight, portable rugged solutions


CASE STUDY – WATER TRACING

....

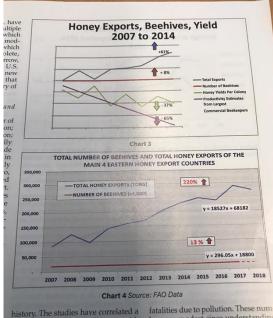
....

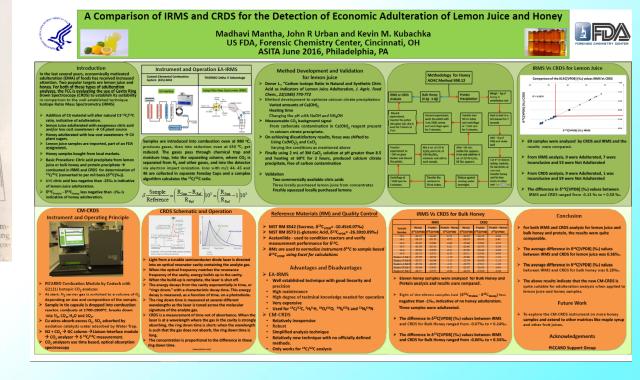
L2130-i: δ 180 and δ D



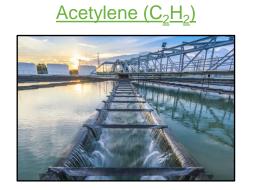
CASE STUDY – PALEOCLIMATE

L2130-i: δ 18O and δ D




CASE STUDY – HONEY, LEMON JUICE ADULTERATION

history. The studies have correlated a decline in productivity of honey with the reduction of forageable land. If in the reduction of forageable land. If is in the state of the links between environmental toxy is interested decredition dramatic and diseases is just emerging.


G2121-i : d13C of CO₂ A0201: Combustion Module

SOLUTIONS FOR HAZARDOUS AIR POLLUTANTS

200 Semana de la Salud Ocupacional Lo humano y lo técnico en un mundo que se transforma

Ammonia (NH₃)

Ethylene Oxide (C₂H₄O)

Formaldehyde (H₂CO)

Hydrogen Chloride (HCI)

Hydrogen Fluoride (HF)

Hydrogen Sulfide (H₂S)

HOW IS PICARRO CRDS BEING UTILISED?

Ambient Air Quality monitoring

Fenceline monitoring stations

Mobile monitoring surveys

Leak Detection & Repair (LDAR)

Continuous Emissions Monitoring (CEMS)

Multipoint Indoor Air Quality monitoring

Stack Testing

Real-Time Analyzers

Turnkey Systems

CASE STUDY – REFINERY COMMUNITY AMMONIA

G2103: NH₃ and H₂O

Stability

Existing fenceline monitors in use required constant calibration and service

CASE STUDY – INDOOR AIR HCI

G2108: HCI and H₂O

Speed

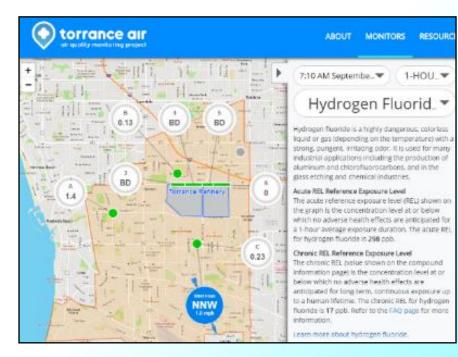
Measurement rate at 0.5 Hz major advance in observational capability compared to other established techniques

Formation and emission of hydrogen chloride in indoor air | Picarro

CASE STUDY – MOBILE MEASUREMENTS

G2204: H₂S, CH₄ and H₂O

Advanced Monitoring GMAP – Field Monitoring NEIC's Field Support Capabilities



CASE STUDY – COMMUNITY MONITORING HYDROGEN FLOURIDE

G2205: HF and H₂O

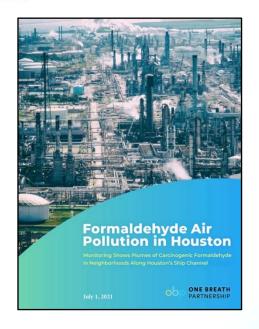
https://www.torranceair.org/monitors.html

Selectivity

Presence of other compounds causes interference for legacy measurement systems Lo humano y lo técnico en un mundo que se transforma

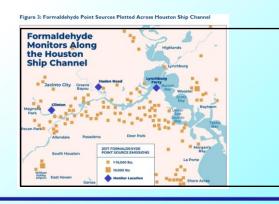
....

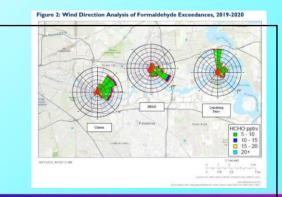
....



CASE STUDY – SHIPPING LANE FORMALDEHYDE

G2307: H₂CO, CH₄ and H₂O

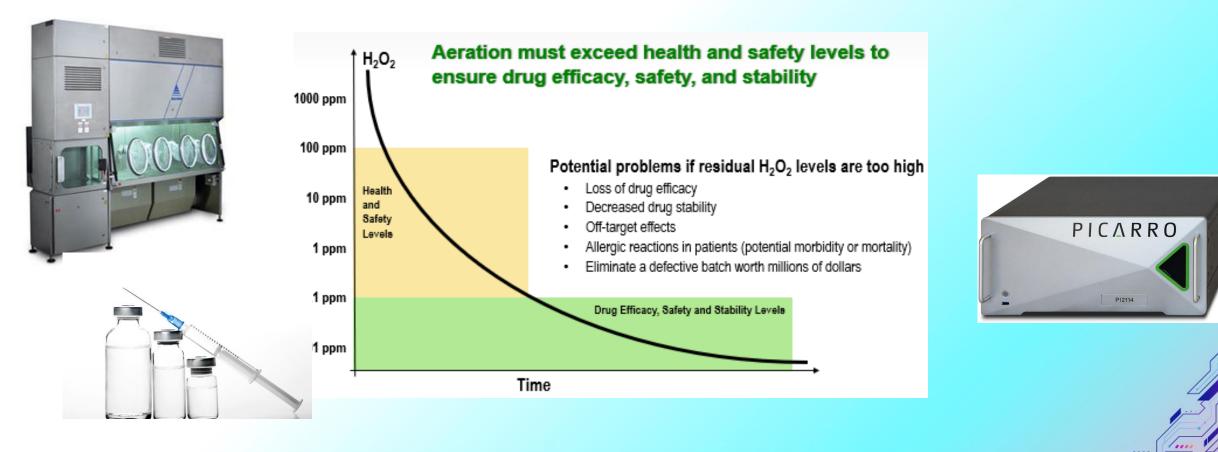

HOUSTON HEALTH



https://environmentalintegrity.org/wpcontent/uploads/2021/06/Houston-Formaldehyde-Report-Final-7.1.21.pdf

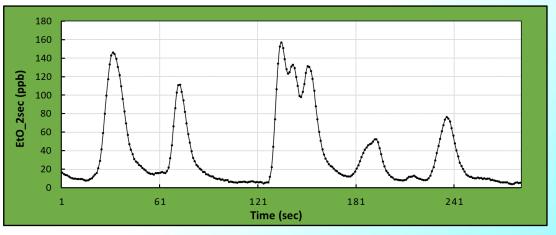
Table 1: Demographic Information and Cancer Risk in Census Tracts Surrounding Monitors

Monitor Location	2014-2018 population	2014-2018 % Below Poverty Level	2014-2018 % Minority	EPA Modeling Estimate* of Formaldehyde Cancer Risk per I Million People	EPA Computer Modeling Estimate of Formaldehyde Concentration (µg/m3)
Clinton Dr. census tract (Galena Park)	2,095	40%	97%	49	1.58 (1.29 ppb)
HRM3 census tract (Cloverleaf)	3,779	23%	67%	96	1.56 (1.27 ppb)
Lynchburg Ferry census tract (east of Channelview)	2,969	14%	40%	70	1.22 (0.99 ppb)



CASE STUDY – MANAGING PHARMACEUTICAL RISK – HYDROGEN PEROXIDE

PI2114: H₂O₂


CASE STUDY – PROCESS MONITOR ETHYLENE OXIDE

G2910: $C_2H_4OCO_2$, CH_4 and H_2O

EVENT DETECTION

- 2-sec measurement interval measurements of a process stream
- 2-sec MDL at 2-3 ppb
- Events invisible to many incumbent technologies

Unprecedented Insight!

Sensitivity

Real-time quantification at parts-per-trillion (ppt) sensitivity designed to meet the most demanding regulatory requirements

CASE STUDY – COMMUNITY MONITORING ETHYLENE OXIDE

G2920: C₂H₄O CO₂, CH₄ and H₂O **A0601**: Zero Reference Module

Ambient Air Monitoring System (AAMS)

VALIDATION WITH SURROGATE GASES

PROBLEM:

- HAPS = hazardous gases
- Standards are challenging
- Hard to procure

SOLUTION:

- SURROGATE gases = safer alternative
- Absorption spectra adjacent to original gas
- Commercially available gases

Model	Primary Gas	Surrogate Gas	Recommended Gas Concentrations			
G2103	NH ₃	CO ₂	0, 200, 1000, 10000 ppm			
G2108	HCI	CH ₄	0, 7, 50, 100 ppm			
G2205	HF	0 ₂	0, 20.94% (ambient)			
G2307	H ₂ CO	CH ₄	0, 7, 50, 100 ppm			
Surregate Cap Validation: A Safer, Essier Way to Validate Measurements of Hazardaya, Carresive, and Basetive Trace Cases Disarre						

Surrogate Gas Validation: A Safer, Easier Way to Validate Measurements of Hazardous, Corrosive, and Reactive Trace Gases | Picarro

USED BY LEADING ORGANISATIONS ACROSS THE GLOBE

For more information, please visit <u>www.picarro.com</u>

or email info@picarro.com

42° Congreso de Ergonomía, Higiene, Medicina y Seguridad Ocupacional. Hotel Intercontinental Medellín - Colombia 2, 3 y 4 de noviembre de 2022

MUCHAS GRACIAS

Jonathan Bent jbent@picarro.com Kate Martin kmartin@picarro.com PICARRO

www.corporacionsoa.co f 💿 💙 🕩 (in

Sociedad Colombiana de Medicina del Trabajo

Lo humano y lo técnico en un mundo que se transforma

Organiza:

